Jim Handy

I'm an industry analyst covering SSDs and related technologies for Objective Analysis. One important thing that I bring to the field is a solid understanding of market from both a technology and business perspectives, since I am an engineer-turned analyst with EE and MBA degrees. My work has led to my becoming a Leader in Gerson Lehrman Group's Councils of Advisors and an honorary member of SNIA, the Storage Networking Industry Association.

How Big Can an SSD Get?

SSD circuit board - courtesey of Intel Corp.Someone recently asked The SSD Guy to guess what would be the largest amount of flash that could be fit into an SSD’s case.  This sounded like a fun problem, so I did a “Back-of-the-Envelope” estimate to try and figure it out.

First of all, I would judge by this post’s picture that you could get no more than 20 chip packages (4 x 5) on one side of a PC board for a 2.5″ SSD.  That’s probably an optimistic estimate.

If you ignore the controller that would allow you to squeeze 40 packages onto a single circuit board.

Certain high-capacity SSDs use a “Butterfly” design to fit three circuit boards into a single 2.5″ HDD housing.  With three 40-package circuit boards you could fit 120 chip packages into the 2.5″ HDD housing.

Today’s densest flash chip stores 128 gigabits or 16 gigabytes.  Samsung and SanDisk can stack 16 of these chips within a single package, making a 16 x 16 gigabyte or 256 gigabyte package.  SanDisk just announced a 512 gigabyte SD Card that doubles Continue reading

Hybrid Drives Not Catching On

Seagate Momentus SSHD press photoSeagate announced last week that the company had shipped a total of 10 million Solid State Hybrid Drives (SSHDs) over the lifetime of the product.  This is far short of expectations by The SSD Guy and a number of other analysts and industry participants.

Why were our expectations higher?  There were a few reasons:

  • The hybrid drive can be viewed as an evolution of the DRAM cache already incorporated into nearly all HDDs today.  Replacing or augmenting an expensive DRAM cache with a slower, cheaper NAND cache makes a lot of sense.
  • An SSHD performs significantly better than Continue reading

SanDisk’s 3-Bit SSD, the Ultra II

SanDisk Ultra II SSDSanDisk has just introduced the Ultra II SSD, an upgrade of the company’s original Ultra drive. The new device is being promoted as a 28 times faster HDD replacement that offers faster boot-up, longer battery life, and shock resistance, in an approach that appears to be a throwback to the early days of SSDs where the point was to sell the technology rather than the product.  Although the press release shows sequential read & write bandwidth numbers of 550 and 500MB/s, neither the press release nor the online product literature even mention IOPS or other measures that are now commonly used to compare one SSD against the other.

SanDisk does tout the fact that this SSD uses Continue reading

Where does NVRAM Fit?

AGIGARAM DDR4 NVDIMM (Photo Courtesy of AgigA Tech)There’s been a lot of interest in NVRAM recently.  This technology has been lurking in the background for decades, and suddenly has become very popular.

What is NVRAM?  Quite simply, it’s DRAM or SRAM that has a back-up flash memory a small controller, and a battery or super-capacitor.  During operation the DRAM or SRAM is used in a system the same way that any DRAM or SRAM would be used.  When power is interrupted the controller moves all of the data from the DRAM or SRAM to the flash using the backup power from the battery or super-capacitor.  When power is restored, the controller moves the contents of the flash back into the SRAM or DRAM and the processor can resume operation where it left off.

In some ways it’s storage and in some ways it’s memory, so Continue reading

New Report Posts Results of IT Manager IOPS Survey

From Report: "How Many IOPS Do You Really Need?"Tom Coughlin and I have just released a new report that helps shed a lot of light on a pretty challenging subject: We asked nearly 200 IT managers to tell us how much storage performance their systems require.  They provided candid replies about their IOPS, latency, and capacity needs for a number of leading applications.

The results of this survey are compiled in a 80-page report titled How Many IOPS do you Really Need?  This one-of-a-kind report provides responses for all of Continue reading

Making Data Destruction ABSOLUTE!

SecureDrives' photo of fractured NAND flash chipsA very unusual press release crossed my desk last week.  London-based SecureDrives has introduced a 2.5″ self-encrypting SSD that takes security one very large step further by physically destroying the flash chips within the SSD by remote command.

The flash chips are actually fractured, as is shown in the accompanying photo, which SecureDrives sent me to illustrate.  Click the thumbnail to enlarge.

SecureDrives calls its product the SDSRDD which is short for Secure Drive SSD, Remote Data Destruction.

My first concern was that the product used some sort of explosive.  The company put me at ease by explaining that the fracture process uses a rapidly propagating shock wave via a patented technology.  They said that the fracturing process creates no safety issues at all.

The destruction command is initiated through a GSM receiver internal to the SSD.  When destruction is required (i.e. the drive is lost or stolen) the SSD’s rightful owner sends a user-defined message or phrase to the drive from any phone in the world.  The drive flips the encryption key and then fractures the NAND flash and security processor.  The drive then returns a confirmation message to the phone.  The destruction process is executed in milliseconds.

Readers may recall a post that I published two years ago about an external SSD from Runcore that over-writes the data in the SSD via a GSM command.  The Runcore product uses over-writing, which can take minutes to perform, rather than a self-encrypted drive which is effectively erased in a few milliseconds.  The Runcore product also differes because it does not physically damage the flash, and, as an external drive, it cannot be incorporated into a notebook PC’s housing as can the SecureDrives product.

It seems that secure SSDs are getting increasingly sophisticated over time.  I eagerly await hearing about the next imaginative step designers will take to make their SSDs more secure.

New Study Forecasts Huge Enterprise SSD Growth

Enterprise SSD Revenues will Cycle with NAND Flash PricesObjective Analysis has published a new study, Enterprise SSDs: Technologies & Markets.

This study breaks the market into 23 application types, and provides an explanation of each along with forecasts by major application category.

Virtualized systems will drive the greatest 5-year average unit shipment growth, at 85%, although the data center will retain its leadership in enterprise SSD consumption.  Overall enterprise SSD unit shipments will grow at an annual average of 32% through 2018.

Since SSD prices are cost-based, with roughly 80% of the cost coming from flash chips, NAND flash price swings will cause Continue reading

White Paper: Matching Flash to the Processor

Moving flash into the memory channel to get fast parallel performance I have just added a new white paper onto the Objective Analysis website: Matching Flash to the Processor – Why Multithreading Needs Parallelized Flash.

This document examines the evolution of today’s CPUs, whose clock frequencies have stopped increasing, but now exploit parallelism to scale performance.  Multiple DRAM channels have also been added to performance computing to add parallelism to the memory channel.

Storage hasn’t kept pace with this move to parallelism and that is limiting today’s systems.

New NAND flash DIMMs recently introduced by Diablo, SanDisk, and IBM, provide a reasonable approach to adding parallel flash to a system on the its fastest bus – the memory channel.  This white paper shows that storage can be scaled to match the processor’s growing performance by adding flash DIMMs to each of the many DRAM buses in a performance server.

The white paper is downloadable for free from the Objective Analysis home page.  Have a look.

IBM Launches Flash DIMMs

IBM's eXFlash DIMMOn Thursday IBM announced its X6 product family, the sixth generation of the company’s successful EXA server architecture.  A smaller byline of the introduction was the company’s new eXFlash memory-channel storage or eXFlash DIMM which is offered as one of many flash options available to X6 users.

Close followers of The SSD Guy already know that I am a serious advocate of putting flash onto the memory bus.  Why slow the technology down by Continue reading

OCZ: Bankruptcy Certain, Outcome in Question

OCZ Corporate HeadquartersOn Wednesday OCZ announced that its bank accounts had been seized by one of its creditors and that the company would file for bankruptcy, but it did not commit on which of two courses of action it would take:

  • To file for bankruptcy and sell itself as an ongoing business to Toshiba
  • To file for bankruptcy and liquidate

If the company is sold to Toshiba the bankruptcy court will require an auction to be held to assure that the price that Toshiba pays is the best price that the company can get.  This means that there is still the possibility of another company actually acquiring OCZ.  Although Seagate was rumored to be interested there are certainly others who are also preparing bids.

OCZ has good technology and a loyal retail customer base, but one year ago Continue reading

Contact

Jim Handy
Objective Analysis
SSD Market Research
+1 (408) 356-2549
Jim.Handy (at) Objective-Analysis.com

Translate to:

Translation Services GTS Translation