LSI SandForce SSD Controllers Move the Knee in the Curve

LSI SandForce SF3700 Controller DuraWrite ImprovementsLSI’s SandForce has just rolled out its SF3700 family of four SSD controllers aimed at the Entry Client, Mainstream Client, Value Enterprise, and Enterprise Storage marketplaces. Performance is impressive, with worst-case random PCIe IOPS at 150K read/81K write and 94K/46K for the SATA interface.

The SF3700 family builds on the division’s first two product families by adding a choice of PCIe or SATA interfaces, LDPC error correction, and a boosted set of flash management features.  The SSD Guy will explore this last point after highlighting the other two.

By providing both PCIe and SATA interfaces LSI is directly addressing the future: PCs are aiming to move to the m.2 SSD specification rather than Continue reading “LSI SandForce SSD Controllers Move the Knee in the Curve”

A New Way to Use SSDs

Micron's View of Computing - Speaker is the CPU, Audience is StorageIn his Flash Memory Summit keynote on Wednesday, Micron VP and Chief Memory Systems Architect Ed Doller made a compelling demonstration of the power and performance advantages of a new approach to computing.

With true showmanship, Doller had his co-workers hand out buttons with LED lights to the entire audience.  The LEDs in these buttons were either green or blue, with the colors randomly dispersed among the crowd.  Doller asked the entire audience to turn on their lights, then called one row of the audience to file up to the stage so he could determine whether each person’s button was blue or green.

He pointed out that this was like having a single CPU check the contents of a drive.  He then asked why things should work this way – wouldn’t it be more sensible to Continue reading “A New Way to Use SSDs”

Extreme SSD Error Correction

Chuo University EmblemAt last week’s International Solid State Circuits Conference (ISSCC) Shuhei Tanakamaru, a researcher from Japan’s Chuo University, detailed a scheme to reduce MLC SSD bit error rates (BER) by 32 times over conventional techniques.  The approach used an impressive combination of mirroring, vertical and horizontal error correction, and a deep understanding of the most likely kinds of bit errors flash will experience.

This is a very novel and well-conceived technique that may find industry adoption in future SSDs.

The steps included in the paper are used in addition to the Continue reading “Extreme SSD Error Correction”

New Booklet: How Controllers Maximize SSD Life

SNIA SSD Controller BookSNIA (The Storage Networking Industry Association) has conferred a great honor upon the SSD Guy by bringing all of the blog posts in the series How Controllers Maximize SSD Life into a single printed volume of the same name.

Readers can either ask for a print copy from SNIA, or can download a pdf rendition by visiting the SNIA SSSI (Solid State Storage Initiative) education web page.

The NAND Band!

NAND Band Backstage PassDuring this month’s Storage Visions conference, SMART Storage Systems hosted a “NAND Band” party.  The company kept the details secret until the guests were all there, after which two “Blues Brothers” impersonators (SMART’s president John Scaramuzzo and Rick Neff, Director of Business Development) showed up in a video singing their new rendition of the 1966 Spencer Davis Group hit: “Gimme Some Lovin’.”   SMART’s version was called: “Gimme Some Endurance” and the lyrics centered around the importance of endurance in SSDs.

(SMART’s NAND Band should not be confused with the techno band named NAND which I only discovered while writing this post.)

The reception was held only a couple of hours after Continue reading “The NAND Band!”

SSDs that Don’t Wear Out

The End of NAND Flash Wear?This is a bad day for The SSD Guy.  I just finished publishing an eight-part series explaining How Controllers Maximize SSD Life, then my evil twin The Memory Guy today published a post telling of a new flash design from Macronix that might just eliminate the flash wear-out mechanism!

But my concerns are inconsequential compared to the feelings of all those folks who have devoted phenomenal time and energy to develop wear management algorithms.

This all stems from an article in the IEEE Spectrum that details a flash chip design that Continue reading “SSDs that Don’t Wear Out”

How Controllers Maximize SSD Life – Internal NAND Management

Tempus FugitGiven that you have used all those other forms of improving SSD wear that we have discussed so far, but you still don’t find that this is enough, what do you do next?  Well a few SSD controllers go one step further and manage some of the inner workings of the NAND flash chip itself.

If that sounds like a significant undertaking to you, then you clearly understand why so very few controllers take this approach.  The information used to perform this function is not generally available – it takes a special relationship with the NAND flash supplier – and you can’t develop this relationship unless the NAND supplier Continue reading “How Controllers Maximize SSD Life – Internal NAND Management”

How Controllers Maximize SSD Life – Feedback on Block Wear

Tempus FugitOne way that SSD controllers maximize the life of an SSD is to use feedback on the life of flash blocks to determine how wear has impacted them.  Although this used to be very uncommon, it is now being incorporated into a number of controllers.

Here’s what this is all about: Everybody knows that endurance specifications tell how much life there is in a block, right?  For SLC it is typically 100,000 erase/write cycles, and for MLC it can be as high as 10,000 cycles (for older processes) but goes down to 5,000 or even 3,000 for newer processes.  TLC endurance can be in the hundreds of cycles.  Now the question is: “What happens after that?”

In most cases individual bits start to Continue reading “How Controllers Maximize SSD Life – Feedback on Block Wear”

How Controllers Maximize SSD Life – Over Provisioning

Tempus FugitOver provisioning is one of the most common ways that SSD designers can help assure that an SSD has a longer life than the flash’s endurance rating would support.  If an SSD contains more flash than is presented at its interface, the controller can manage wear across a larger number of blocks while at the same time accelerating disk performance by moving slow operations like block erases out of the way of the SSD’s key functions.

Many people like to compare wear leveling to rotating a car’s tires.  In this vein, think of over provisioning as having a bunch of spare Continue reading “How Controllers Maximize SSD Life – Over Provisioning”

How Controllers Maximize SSD Life – Reduced Write Amplification

Tempus FugitWrite amplification plays a critical role in maximizing an SSD’s usable life.  The lower the write amplification, the longer the SSD will last.  SSD architects pay special attention to this aspect of controller design.

Unlike the other factors described in this series this is not a technique that extends flash life beyond the 10,000 erase/write cycles that one would normally expect to result in a failure, but it is very important to SSD longevity.

Write Amplification is sufficiently complex that I won’t try to define it in this post, but Continue reading “How Controllers Maximize SSD Life – Reduced Write Amplification”